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Greg Call Daily Notes
June 9, 2025

Spectral Graph Theory and Graph Quantum Mechanics
Graph Quantum Mechanics: Intersection of Quantum Mechanics, Linear Algebra, and
Graph Theory

Toy Model of Quantum Mechanics: A simplified, discrete model

Schrödinger’s Equation: Describes the evolution of quantum states

• ∂
∂t
Ψ = i

~∇
2Ψ

• F = ma is the classical analogue to Schrödinger’s Equation.

The Schrödinger equation is sensitive to geometry so we can make it discrete

Discrete Schrodinger Equation:

• Quantum particles live on a graph

•

v1 v2 v3

v4

v5

v6

v7

In a graph, the Laplacian is a matrix
E = λ

Connection to Entropy:

• Entropy: a measure of the disorder of a system

• S(ρ) =
∑n

i=1 −λi lnλi (λi is an eiganvalue of ρ)
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Greg Call Daily Notes
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Intro to Differential Equations and Matrix Exponentials
Origins of differential equations:

• y(t) is function

• y1 = 1

so, y(t) = t + k

(*Ansatz = a guess)
Method (Integrating Factors):

y1 = 1

dy

dt
= 1

dy = dt

y =

∫
dt = t+ k

y1 = y

dy

dt
= y

dy

y
= dt∫

dy

y
=

∫
dt

ln |y| = t+ k

y = et+k = ek · et = ket

Linear systems of Differential Equation:
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Step 1: Matrix form:

[
y1
y2

]1
=

[
1 1
1 −1

] [
y1
y2

]
Answer ?

[
y1
y2

]
= e

1 1
1 −1

t [
y1
y2

]
Matrix Exponential:

• what it is not

• A =
[
1 1
1 1

]
so eA =

[
e1 e1

e1 e1

]
THIS IS INCORRECT

Taylor Series: (Taylor expansion on ex)

ex = 1 + x+ x2

2!
+ x3

3!
+ x4

4!
+ ...

Now...

eA = I + A+ A2

2!
+ A3

3!
+ A4

4!
+ ...

b) e

λ1 0
0 λ2



e

λ1 0
0 λ2


=

[
1 0
0 1

]
+

[
λ1 0
0 λ2

]
+

1

2!

[
λ2
1 0
0 λ2

2

]
+

1

3!

[
λ3
1 0
0 λ3

2

]
+ · · ·

=


∞∑
n=0

(λ1)n

n!
0

0
∞∑
n=0

(λ2)n

n!

 =

[
eλ1 0
0 eλ2

]

Theorem:
If A is an nxn matrix with eiganvalues λ1, λ2, ..., λn then det A = (λ1)(λ2)...(λn)

Consequence:

A is non-invertible if one eigenvalue is 0

Theorem 2: If A is matrix that has eiganvalues λ1)(λ2)...(λn), then eA has eigenvalues
eλ1 ,eλ2 ,..., eλn
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Matrix Exponential Proofs and Intro to Graph Theory
Matrix Exponential Proofs:

Binomial Theorem:

• Provides a formula for expanding expressions of the form (a+ b)n

• (x+ y)n =
(
n
0

)
xn +

(
n
1

)
xn−1y +

(
n
2

)
xn−2y2 + · · ·+

(
n
n

)
yn

PF: We know that:

eAt = I + At+
(At)2

2!
+

(At)3

3!
+

(At)4

4!
+ · · ·

Now we can take the derivative of each term:
d

dt
eAt = 0 + A+

2A2t

2!
+

3A3t2

3!
+

4A4t3

4!
+ · · ·

Simplifying:

d

dt
eAt = A+ A2t+

A3t2

2!
+

A4t3

3!
+ · · · = A

(
I + At+

(At)2

2!
+

(At)3

3!
+ · · ·

)
= AeAt

therefore, we conclude : d

dt
(eAt) = AeAt

Graph Theory:

• The graph Schrödinger equation connects differential equations + linear algebra +
graph theory

• Def A graph is a set (V, E) where V is a set of vertices and E is a set of edges

Non-Directed Graph Directed Graph
e = {v1, v2}, v1, v2 ∈ V e = (v1, v2), v1, v2 ∈ V

unordered pair ordered pair (from v1 to v2)

v1 v2 v1 v2
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• Erdös number: describes the ”collaborative distance” between mathematician Paul
Erdös and another person, as measured by authorship of mathematical papers.
(vertices = scholars)

Combinatorics and Graph Theory Textbook:

1.1

• 1. Digraph (directed graph): each edge of a digraph has a specific orientation

• 2. Multigraph: repeated elements in the set of edges

• 3. Pseudograph: edges connect a vertex to itself

• 4. Hypergraph: edges are arbitrary subsets of vertices

• 5. Infinite graphs: V or E is an infinite set

1.2

• V(G): the vertex set of a graph G

• E(G): the edge set

• Order: the cardinality of a graph’s vertex set

• Size: the cardinality of a graph’s edge set

• Adjacent: given v1, v2 if v1, V2 ∈ Ethenv1, v2 are adjacent

• If an edge e has a vertex v as an end vertex, v is incident with e

• The neighborhood of a vertex v, denoted by N(v) is the set of vertices adjacent to v

• The First Theorem of Graph Theory: In a graph G, the sum of the degrees of the
vertices is equal to twice the number of edges. Consequently, the number of vertices
with odd degree is even

Perambulation and Connectivity:

• A walk in a graph is a sequence of (not necessarily distinct) vertices v1, v2, ..., vk s.t
vivi+1 ∈E for i = 1, 2,..., k-1. Such a walk is sometimes called a v1 − vk walk, and v1
and vk are the end vertices of the walk

• If the vertices in a walk are distinct, then it’s called a path

• If the edges in a walk are distinct, then it’s called a trail

• Theorem 1.2: In a graph G with vertices v1 and v2, every v1-v2 walk contains a v1-v2
path

• A graph is connected if every pair of vertices can be joined by a path
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Graph Laplacion
• Def Γ (graph), Γ = (V, E)

• deg(V) = number of neighbors

• Def Simple graph: no multi-edges, no loop edges

• Def Connected Components: Maximally Connected Subgraph

Connected vs. Disconnected Graphs
Connected Graph Disconnected Graph

1 connected component 4 connected components

Degree Matrix

• The degree matrix DΓ of a graph Γ is an n× n matrix such that:

DΓ(i, i) = deg(vi), and DΓ(i, j) = 0 for i 6= j

• Example:

v1 v2 v3

• The corresponding degree matrix DΓ is:

DΓ =

1 0 0
0 2 0
0 0 1



7



• A disconnected graph will result in a non-invertible matrix

Adjacency Matrix

• The adjacency matrix AΓ of a graph Γ is an n× n matrix where:

AΓ(i, j) =

{
1, if there is an edge between vi and vj

0, otherwise

• The matrix is symmetric for undirected graphs and has 0s on the diagonal if there are
no loops.

• Example:

v1 v2 v3

• The corresponding adjacency matrix AΓ is:

AΓ =

0 1 0
1 0 1
0 1 0



AΓ =

0 1 0
1 0 1
0 1 0


Compute the determinant:

det(AΓ) = 0

Therefore, we conclude that AΓ is not always invertible.

The Graph Laplacian

• The graph Laplacian ∆Γ is defined as:

∆Γ = DΓ − AΓ

PF:

A matrix A is invertible if and only if dim(kerA) = 0. However, for the graph Laplacian
∆Γ, we know that:

dim(ker∆Γ) = number of connected components of Γ

Since this dimension is never zero, it follows that:

dim(ker∆Γ) 6= 0,

and therefore we conclude that ∆Γ is never invertible.

Graph Quantum Mechanics
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• Example:

1 -1 2

• Degree matrix:

DΓ =

1 0 0
0 2 0
0 0 1


• Adjacency matrix:

AΓ =

0 1 0
1 0 1
0 1 0


• Laplacian:

∆Γ = DΓ − AΓ =

 1 −1 0
−1 2 −1
0 −1 1


– In a steady state, all vertices within a connected component have the same value.
– The Laplacian helps transfer information across the graph.
– ker(∆) = {v | ∆v = 0} = the space of steady states.
– Thm: dim(ker(∆)) = number of connected components (a topological property).

How about entropy?

– Z(∆) = −
∑n

i=1 λi lnλi

–– λ is eiganvalue ∆

– λ 6=0

9



Greg Call Daily Notes
June 13, 2025

Graph Isomorphism, Linear Transformations, and QM
Graph Isomorphism

• Bijection: A function that is both injective (one-to-one) and surjective (onto). A
bijection creates a one-to-one correspondence between elements of two sets.

• Linear Transformation: A function f : V → W between vector spaces is a linear
transformation if:

– f(u+ v) = f(u) + f(v)

– f(λu) = λf(u)

• A linear transformation is bijective if it is:

– Injective: f(u) = f(v) ⇒ u = v

– Surjective: Every element in the codomain W has a preimage in the domain V

• Def Γ1
∼= Γ2 if there exists a bijection f : V1 → V2 such that:

{v, v′} ∈ E1 ⇐⇒ {f(v), f(v′)} ∈ E2

That is, Γ1 and Γ2 have the same structure (same number of vertices and adjacency
preserved).

Examples of Vector Spaces

• R (dimension = 1)

• Rn (dimension = n)

• Matrices of size m× n (dimension = mn)

• Pd: polynomials of degree ≤ d (dimension = d+ 1)

• R2 ∼= P1 (isomorphic since dimensions are equal)

• Isomorphism Theorem:
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– If dim(V ) = dim(W ), then V ∼= W

Question: next week: what is the dim of the vector space of quantum vertex states

Answer: dim is |v|n (order)

Question: What is the dimension of the space of ”steady” states?

Answer: dim(ker(∆))

Baker–Campbell–Hausdorff Formula

• e0 = 1

• exey = ex+y

• eAeB 6= eA+B

• Baker–Campbell–Hausdorff Formula: eAeB = eA+B+...

• ... = f([A,B)] = AB −BA, the commutator

In Quantum Mechanics

• Matrix A represents an observable (i.e., a measurable quantity).

• Examples: position, momentum, energy, entropy

• Heisenberg’s Uncertainty Principle:

– In classical mechanics, position and momentum can be known with absolute pre-
cision.

– In quantum mechanics, there is a limit to how precisely both can be known
simultaneously.

Regular Graph

• All vertices have same degree

Entropy Notes

What is Entropy?

• Entropy quantifies uncertainty or lack of information about a system.

• It is observer-dependent and not an intrinsic property.

• The Second Law of Thermodynamics: entropy increases over time.

• Entropy explains the direction of time and large-scale predictability.

11



Historical Background

• Carnot (1824): Not all heat is convertible to work.

• Clausius: Coined entropy, stated it trends toward a maximum.

• Boltzmann: Defined entropy via the number of microstates per macrostate.

Statistical View

• High entropy implies many possible microstates.

• Natural progression: low to high entropy (more probable states).

• Defines the thermodynamic arrow of time.

Information Theory

• Shannon defined entropy as message unpredictability.

• Structural similarity between Shannon and Boltzmann entropy.

• High entropy: patternless; low entropy: structured.

• “Entropy is what we don’t know; information is what we do.” – Seth Lloyd

Modern Interpretations

• Gibbs: Entropy increases with particle mixing.

• Von Neumann: Tracks quantum state uncertainty.

• Bekenstein-Hawking: Connects entropy to black hole event horizons.

Subjectivity in Entropy

• Observer perspective affects entropy values (Gibbs paradox).

• “Observational entropy” integrates measurable information.

Entropy and Computation

• Perfect knowledge: entropy is constant, time doesn’t flow.

• Coarse-graining due to limited computation explains perceived time.

Applications

• Machine learning: Entropy used in compression algorithms.

• Physics: Szilard’s engine converts information into physical work.

12



Von Neumann Entropy of Graphs

• Measures structural complexity via spectral properties.

• Laplacian and normalized Laplacian versions.

• Higher entropy: more components, longer paths, greater symmetry.

Applications

• Network analysis, graph classification, and centrality metrics.

Approximations and Limitations

• Quadratic approximation based on degree distribution.

• Less accurate for irregular or complex networks.

Interpretation

• Captures randomness and structure in network form.

• Bridges thermodynamics, quantum mechanics, and information theory.
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Types of Graphs
Thm Eiganvalues of (∆) are non-negative (week long HW)

Types of Graphs

• 1. Complete Graphs: A complete graph of order n is denoted by Kn.

• 2. Empty Graphs: The empty graph on n vertices, denoted by En, is the graph of
order n where E is the empty set.

• 3. Complements: Given a graph G, the complement of G, denoted by G, is the
graph whose vertex set is the same as that of G, and whose edge set consists of all the
edges that are not present in G.

• 4. Regular Graphs: A graph G is regular if every vertex has the same degree. G
is regular of degree r (i.e., r-regular) if deg(v) = r for all vertices v in G. Complete
graphs of order n are regular of degree n− 1, and empty graphs are regular of degree
0.

• 5. Cycles: The graph Cn is a cycle on n vertices.

• 6. Paths: The graph Pn is a path on n vertices.

• 7. Subgraphs: A graph H is a subgraph of a graph G if V (H) ⊂ V (G) and E(H) ⊂
E(G).

• 8. Induced Subgraphs: Given a graph G and a subset S of the vertex set, the
subgraph of G induced by S, denoted 〈S〉, is the subgraph with vertex set S and edge
set {uv | u, v ∈ S and uv ∈ E(G)}. So, 〈S〉 contains all the vertices of S and all edges
of G whose end vertices are both in S.

• 9. Bipartite Graphs: A graph G is bipartite if its vertex set can be partitioned into
two sets X and Y in such a way that every edge of G has one end vertex in X and the
other in Y . In this case, X and Y are called the partite sets. A bipartite graph with
partite sets X and Y is called a complete bipartite graph if its edge set is of the form
E = {xy | x ∈ X, y ∈ Y } (that is, if every possible connection of a vertex in X with a
vertex in Y is present). Such a graph is denoted by K|X|,|Y |.

14



• 10. Tree Graphs: Connected graph with no cycles

• 11. Star Graphs: A tree with exactly one vertex of degree greater than 1 (the central
vertex) and all other vertices having degree 1 (leaf vertices)

15
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Incidence Matrix and Odd Laplacian
Incidence Matrix: Let Γ be a directed graph with |V | = n vertices and |E| = m edges. The
incidence matrix IΓ is an n×m matrix defined as follows:

I(i, j) =


−1 if edge ej starts at vertex vi,

1 if edge ej ends at vertex vi,

0 otherwise.

Example: For the directed path v1 → v2 → v3, the incidence matrix IΓ is:

IΓ =

−1 0
1 −1
0 1


The transpose of the incidence matrix IΓ is:

I>Γ =

[
−1 1 0
0 −1 1

]
I>Γ IΓ (the odd Laplacian):

I>Γ IΓ =

[
2 −1
−1 2

]
IΓI

>
Γ (the even Laplacian):

IΓI
>
Γ =

 1 −1 0
−1 2 −1
0 −1 1


The graph Laplacian is defined as

∆Γ = DΓ − AΓ,

DΓ =

1 0 0
0 2 0
0 0 1

 , AΓ =

0 1 0
1 0 1
0 1 0

 .
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∆Γ = DΓ − AΓ =

 1 −1 0
−1 2 −1
0 −1 1

 .

Theorem ∆ = II>

• ∆+ (even): D − A = II>

• ∆− (odd): I>I

Fermions and Bosons

• Superlaplacian:

∆ =

(
∆+ 0
0 ∆−

)
• Observation: ∆+ and ∆− have the same non-zero eigenvalues.

• dimker(∆+) = number of zero eigenvalues = number of connected components = b0.

• dimker(∆−) = number of independent cycles = b1.

• Theorem:
b0 − b1 = |V | − |E| → topological invariant.
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Entropy/Gluing, and the Weighted Laplacian
Observation: If Γ1

∼= Γ2, then S(∆Γ1) = S(∆Γ2).

Def Two graphs Γ1 and Γ2 are iso-entropic if S(Γ1) = S(Γ2).

Def Two graphs are isospectral if they have the same eigenvalues.

Overarching Questions
Q: Von Neumann Entropy and Gluing

• Let Γ1 and Γ2 be graphs, and consider the following types of gluing:

– Γ1 ∪ Γ2 (interface gluing)
– Γ1 ∪ Γ2 (bridge gluing)
– Conj. S(Γ1 ∪ Γ2) ≥ S(Γ1) + S(Γ2)

Def: Interface Gluing: glue on isomorphic subgraphs

Ex.

Ex. Pair of pants decomposition

Def: Bridge Gluing

Ex.

18



Cheeger Inequalities: Measurements of bottlenecks

Disjoint Union: Γ1 ∪ Γ2 — place them near each other

• S(Γ1 ∪ Γ2) = S(Γ1) + S(Γ2)

Weighted Laplacian:

• Normalized Laplacian: ∆N = D1/2∆D−1/2

• Weights:

Aw(i, j) =

{
wij, if vivj ∈ E

0, otherwise

v1 v2 v3
1 2

The weighted adjacency matrix Aw is:

Aw =

0 1 2
1 0 1
2 1 0


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Rewiring/Gluing of the Laplacian and their Spectra
Rewiring:

1

2 3

4

b0 = 2, b1 = 1

1

2 3

4

b0 = 1, b1 = 0

• b0 − b1 = 1 for both

Q What is rewiring in higher dimensions?

Gluing Formulas for the Laplacian:

• Bridge Gluing: ∆+1
Γ1

∪B ∆+1
Γ2

=

(
∆+1

Γ1
0

0 ∆+1
Γ2

)

Gluing of Graph Laplacians and their Spectra Summary:

The paper studies a central question in spectral graph theory:

How do the Laplacians, and their spectra behave when two graphs are glued?

The paper addresses this by introducing and analyzing two ways of gluing graphs:

• Interface gluing

• Bridge gluing

20



The paper then derives how these operations affect the even and odd graph Laplacians
and their spectra, and discuss applications in quantum mechanics and network theory.

Gluing Methods:

Interface Gluing In interface gluing, two graphs are joined by identifying a common
subgraph. This subgraph is called the interface. The result is that the two graphs share this
overlapping structure in the glued graph.

Bridge Gluing In contrast, bridge gluing begins with two graphs, and then introduces
a new edge that connects selected vertices from each graph. This is structurally different:
instead of merging shared parts, it preserves the original graphs intact and simply connects
them.

Even and Odd Graph Laplacians

Even Laplacian (∆+) Acts on functions defined on vertices. Measures how much a
function at a vertex differs from values at its neighboring vertices. Defined as: ∆+ = IIT ,
where I is the incidence matrix of the graph. Independent of edge orientation. Discrete
analog of the Laplacian operator in Rn.

Odd Laplacian (∆−) Acts on functions defined on edges. Measures how values assigned
to edges vary along incident edges. Defined as: ∆− = IT I Depends on edge orientation.

Key Insight: Although ∆+ and ∆− act on different spaces and depend differently on
orientation, the authors prove that they are isospectral, meaning that they have the same
nonzero eigenvalues with the same multiplicities, even though their kernels differ. This is
super important as it allows us to analyze one Laplacian and recover spectral information
that is still true about the other.

Spectral Effects of Gluing

Matrix Formulations
For both gluing types, the authors derive explicit matrix formulas for the Laplacians of the
resulting graphs.

Interface gluing: The Laplacians are formed by merging the matrices along the shared
subgraph, treating overlapping vertices and edges as one. The diagonal entries (degrees) are
updated to reflect connections from both graphs, while off-diagonal entries capture any new
adjacencies introduced by the gluing.

Bridge gluing: The new Laplacian becomes a block matrix. It includes the original Lapla-
cians plus correction terms corresponding to the added bridge edges.

Spectral Relationships To make this practical, the authors prove relationships be-

21



tween characteristic polynomials:

For interface gluing of graphs Γ1 and Γ2 along interface I:

E(Γ1 tI Γ2) =
E(Γ1)E(Γ2)

E(I)

For bridge gluing with bridge graph B:

E(Γ1 tB Γ2) =
E(Γ1)E(Γ2)

E(B)

Here, E(Γ) is the characteristic polynomial of the even Laplacian

Why does this matter?
It means we can compute the spectrum of a complex graph from the spectra of its parts,
with correction terms that depend only on the interface or bridge. This avoids recomputing
everything from scratch.

The Fiedler Value (Algebraic Connectivity)

Def: The Fiedler value is the smallest nonzero eigenvalue of the even Laplacian. It de-
scribes how well-connected the graph is.

However, computing the Fiedler value directly is hard, especially for large graphs.

So, the paper gives an algorithm that computes or estimates the Fiedler value of a glued
graph using:

• The spectra of the components

• The structure of the bridge or interface

Quantum Mechanics

In discrete quantum mechanics, the graph Laplacian acts like the Hamiltonian in the
Schrödinger equation:

∆ΓΨ = EΨ

where:

• Ψ is a wavefunction defined on the graph’s vertices,

• E is the energy,

• the eigenvalues of ∆Γ represent the energy levels.

Using gluing, the paper shows how to build composite quantum systems from smaller
ones. This allows:
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• computing partition functions

• implementing a combinatorial version of the Feynman path integral, which is a way to
sum over quantum paths on a graph.

A key result is that eigenvectors of the glued graph behave predictably, which makes it
efficient to compute time evolution in large quantum systems.

Applications

Quantum Mechanics
In discrete quantum mechanics, the graph Laplacian acts like the Hamiltonian (which rep-
resents kinetic energy) in the Schrödinger equation:

∆ΓΨ = EΨ

where: Ψ is a wavefunction defined on the graph’s vertices, E is the energy, and the
eigenvalues of ∆Γ represent the energy levels.

Using gluing, the paper shows how to build composite quantum systems from smaller
ones. This allows:

• computing partition functions

• implementing a combinatorial version of the Feynman path integral

A key result is that eigenvectors of the glued graph behave predictably, which makes it
efficient to compute time evolution in large quantum systems.

The paper also proposes a modular electronic structure model. This approach enables
parallel computation of quantum properties.

Finally, inspired by Witten’s ideas in supersymmetry, they connect spectral properties
of the graph (like eigenvalues) to topological features such as the Euler characteristic and
Betti numbers.

Network Theory and Bottleneck Detection
In network science, the eigenvalues of the graph Laplacian provide important information

about:

• Connectivity (via the Fiedler value)

• Bottlenecks (via the Cheeger constant)

The paper shows that gluing operations affect these spectral quantities in predictable
ways

The authors also extend their results to the normalized Laplacian. This extension is
especially useful when analyzing real-world graphs
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Euler Characteristic, Diagonalization
Euler Characteristic:

Def χ(Γ) = |V | − |E|

Thm χ(Γ) = b0 − b1

What is χ for gluing?

Bridge:

Ex.

Γ1

Γ2bridge

• χ(Γ1) = 1

• χ(Γ2) = 1

• χ(B) = 1

• χ(Γ1 ∪ Γ2) = 1

Thm χ(Γ1 ∪ Γ2) = χ(Γ1) + χ(Γ2)− χ(B)

So, E(Γ1)·E(Γ2)
E(B)

Diagonalization:

Let M be a matrix with eigenvalues.

24



We say M is diagonalizable if there exists a matrix Q such that

D = Q−1MQ

If so, Q is a matrix whose columns are eigenvectors of M , and D is a diagonal matrix whose
diagonal entries are the corresponding eigenvalues.

Applications:

Dn = Q−1MnQ

D2 = (Q−1MQ)(Q−1MQ) = Q−1M2Q

M2025 = QD2025Q−1

Thm: M is diagonalizable if and only if, for every eigenvalue λ,

algebraic multiplicity(λ) = geometric multiplicity(λ)

This condition must hold for all eigenvalues of M .

What if M is not diagonalizable?

• M can be approximated by diagonalizable matrices.

• That is, there exists a sequence {Mk} of diagonalizable matrices such that Mk → M .
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Small World Networks
Characteristic Path Length:

• Definition:

LΓ =

∑
d(v, w)(
n
2

)
• Example:

1

2

3

4

LΓ =
1 + 1 + 2 + 2 + 2

6
=

9

6
=

3

2

• In general, Pn (the path graph) has the largest characteristic path length

Def: For v ∈ V , the clustering coefficient is:

cc(v) =
|E(〈N [v]〉)|

|E(Kdeg(v)+1)|
Average clustering coefficient:

cc(Γ) =

∑
v∈V cc(v)

n

Def: A small world network is a sparse graph such that:

• L(Γ) is small

• cc(Γ) is large

26



Question: In what way does a small world network relate to entropy? *Is this the idea?*

High clustering ⇒ low entropy, Short characteristic path length ⇒ high entropy

1.2.3 in Graph Theory Book:

Acquaintance Graph: A graph where each vertex represents a person, and an edge con-
nects two vertices if the corresponding people know each other. → Is this graph connected?
Potentially. However, if the graph is disconnected, there is one very large connected compo-
nent.

Six Degrees Theory: Asserts that, given any pair of individuals, there exists a chain of
no more than six acquaintance connections joining them.

Small-World Network: What makes a small world small?

1. Plenty of mutual acquaintances

2. The graph should be sparse in edges

3. Distances between pairs of vertices should be relatively small

4. There should be a reasonable amount of clustering

5. Low characteristic path lengths and high clustering coefficients

SWN Readings:

Many systems, such as the internet, social groups, and biochemical pathways, have been
described as exhibiting small-world properties, characterized by high clustering and short
path lengths. This paper critiques the widely used small-world coefficient σ, defined as:

σ =
C/Crand

L/Lrand

where C is the clustering coefficient, L is the characteristic path length, and Crand, Lrand are
the corresponding values from an equivalent random network.

Limitations of σ:

• Overestimates small-worldness: even networks with low absolute clustering can be
labeled small-world if Crand is very low.

• Highly sensitive to small fluctuations in Crand.

• Depends on network size; σ tends to increase in larger networks.

• Cannot distinguish where a network lies on the lattice–random spectrum.
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Solution: The ω Index
To resolve these issues, the authors define a new small-world measure:

ω =
Lrand

L
− C

Clatt

where Clatt is the clustering of an equivalent lattice network. This formulation better reflects
the original intuition of Watts and Strogatz.

Properties of ω:

• Values are bounded between −1 and 1.

• ω ≈ 0: Network has small-world properties (high clustering and short path length).

• ω < 0: More lattice-like (longer path length, high clustering).

• ω > 0: More random-like (short path length, low clustering).

• Network-size invariant: more consistent across different scales.

Interpretation:

• A typical small-world range is approximately −0.5 ≤ ω ≤ 0.5.

• ω enables continuous comparison and positioning of a network along the lattice /
small-world / random spectrum.
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Greg Call Daily Notes
July 1, 2025

Topology v. Entropy
Topology

• Graph topology

• 1-dimensional object (vertices + edges)

• b0: number of connected components

• b1: number of independent cycles

• ∆+, ∆− knows about topology

• dim(ker(∆+)) = b0

• dim(ker(∆−)) = b1

Entropy

• ∆+, ∆− knows about entropy

• Entropy: ”non-topological info”
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Greg Call Daily Notes
July 2, 2025

Quick Intro to Morse Theory
Morse Theory

• Continuum → Discrete

• Goal of Morse Theory: Study topological invariants using multivariable calculus.

• Index = number of downward directions at a critical point

Morse Theorem:
C0 − C1 + C2 = χ

where:

• C0 = number of critical points of index 0

• C1 = number of critical points of index 1

• C2 = number of critical points of index 2

• χ is the Euler characteristic.

When you ”punch” a torus to deform it, the number of critical points may change, but the
Euler characteristic χ remains unchanged.
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Greg Call Daily Notes
July 3, 2025

Graph Theory Notes for Project

Distance Matrix
Let D(i, j) be the distance between vertex vi and vertex vj in a graph. The distance matrix
records all such distances.

• symmetric

• 0 in diagonal

Eccentricity:
The eccentricity ecc(v) of a vertex v is the greatest distance between v and any other vertex
in the graph:

ecc(v) = max
x∈V

d(v, x)

Radius of a Graph:
The radius of a graph G is the smallest eccentricity among all vertices:

rad(G) = min
v∈V

ecc(v)

Diameter of a Graph:
The diameter of a graph G is the largest eccentricity among all vertices:

diam(G) = max
v∈V

ecc(v)

Inequality:
rad(G) ≤ diam(G) ≤ 2 · rad(G)

Center of a Graph:
The center C of a graph is the set of all vertices whose eccentricity equals the radius:

C = {v ∈ V | ecc(v) = rad(G)}
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Periphery of a Graph:
The periphery of a graph is the set of vertices whose eccentricity equals the diameter:

Periphery(G) = {v ∈ V | ecc(v) = diam(G)}
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Greg Call Daily Notes
July 7, 2025

Discrete Morse Theory

In the continuum Morse theory is:

C0 − C1 + C2 = b0 − b1 + b2 = χ(M)

In discrete Morse theory on graphs, the Morse function changes value at least once if there
is a change in dimension, reflecting topology changes.

1

1 1

1

0 0

0

0

Ok version
Every cell is critical

3

2 2

1

2 2

1

0

Graph Morse function “perfect”
1 critical point

2

1 1

0

1 1

0

0

Not Morse

On a graph, the Euler characteristic is:

C0 − C1 = b0 − b1 = |V | − |E|.

Morse Inequality for graphs:

• b0 ≤ C0

• b1 ≤ C1

33



Homework Questions

HW1: What are the steady states?

Answer: Steady states are functions that do not change over time. These include constant
functions or any functions for which the Laplacian (or second derivative) is zero.

PF: For a function Ψ to remain unchanged over time, its second derivative must vanish:

∇2Ψ = 0

HW2: Solve

(a) y′ = 5y

ln |y| = 5t+ k
y = e5t+k = ke5t

(b) y′ = −y + 1

y′ = −y + 1

dy

dt
= −y + 1∫

dy

1− y
=

∫
dt

− ln |1− y| = t+ k

ln |1− y| = −t− k

1− y = e−t−k = −ke−t

y = 1 + ke−t

HW3: Matrix exponentials
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(a) e

−1 0
0 1



e

−1 0
0 1


=

∞∑
n=0

1

n!

[
−1 0
0 1

]n
=


∞∑
n=0

(−1)n

n!
0

0
∞∑
n=0

1
n!

 =

[
e−1 0
0 e

]

(b) e

λ1 0
0 λ2



e

λ1 0
0 λ2


=

∞∑
n=0

1

n!

[
λ1 0
0 λ2

]n

=


∞∑
n=0

(λ1)n

n!
0

0
∞∑
n=0

(λ2)n

n!

 =

[
eλ1 0
0 eλ2

]

HW4: Let A be any square matrix. Prove that eA is always invertible.

We want to show that eAe−A = I, where

eA =
∑ Am

m!
,

e−A =
∑ (−A)n

n!
.

We multiply the two series:

eAe−A =

(∑ Am

m!

)(∑ (−A)n

n!

)
.

This gives another power series:

eAe−A =
∑

(some coefficient) · Ak.

Now we solve for the coefficient of Ak. We get:(
1

k!
+

(−1)k

k!

)
+

(
−1

(k − 1)! · 1!
+

(−1)k−1

(k − 1)! · 1!

)
+

(
−1

(k − 2)! · 2!
+

(−1)k−2

(k − 2)! · 2!

)
+ . . .

We observe two cases:

• 1. k is odd, the terms alternate and cancel in pairs.

• 2. k is even, we can factor and rewrite the full sum as:
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1

k!

k∑
l=0

(−1)l
(
k

l

)
,

where (
k

l

)
=

k!

(k − l)! · l!
.

By the binomial identity:

k∑
l=0

(−1)l
(
k

l

)
=

{
1 if k = 0,

0 if k > 0.

Therefore, the coefficient is 1 when k = 0 and 0 for all k > 0, so:

eAe−A = I.

This also means e−AeA = I, so eA has an inverse. We conclude that

(eA)−1 = e−A,

so eA is always invertible.

HW5: Verify that d
dt
(eAt) = AeAt.

PF: We know that:

eAt = I + At+
(At)2

2!
+

(At)3

3!
+

(At)4

4!
+ · · ·

Now we can take the derivative of each term:

d

dt
eAt = 0 + A+

2A2t

2!
+

3A3t2

3!
+

4A4t3

4!
+ · · ·

Simplifying:

d

dt
eAt = A+ A2t+

A3t2

2!
+

A4t3

3!
+ · · · = A

(
I + At+

(At)2

2!
+

(At)3

3!
+ · · ·

)
= AeAt

therefore, we conclude : d

dt
(eAt) = AeAt

HW6: Is AΓ always invertible?

AΓ =

0 1 0
1 0 1
0 1 0

 ⇒ det(AΓ) = 0

So AΓ is not always invertible.
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HW7: Prove that ∆Γ is never invertible.

PF: A matrix A is invertible if and only if dim(kerA) = 0. For the graph Laplacian ∆Γ,

dim(ker∆Γ) = number of connected components of Γ

This is always at least 1, so ∆Γ is never invertible.

HW8: Prove or disprove: If a graph is regular, the adjacency matrix is always invertible.

PF:
I will disprove this statement by providing a counterexample. Consider the regular graph
C4. Its adjacency matrix A is:

A =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 .

Calculating the determinant, we find det(A) = 0. Since the determinant is zero, the matrix
A is not invertible.

Therefore, we conclude that the adjacency matrix of a regular graph is not always invertible.

HW9: Compute S(∆Γ) for the path graph on three vertices.

The Laplacian matrix of the path graph on three vertices is:

∆Γ =

 1 −1 0
−1 2 −1
0 −1 1


We compute the characteristic polynomial:

det(∆Γ − λI) = (−λ) (λ− 1)(λ− 3)

So, the eigenvalues are:
λ1 = 0, λ2 = 1, λ3 = 3

Now:∑
λ lnλ = 1 · ln 1 + 3 · ln 3 = 0 + 3 ln 3 = 3 ln 3 ≈ 3.30

HW10: Prove that det(A) = λ1λ2λ3.

PF:
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Let A be a 3× 3 matrix with eigenvalues λ1, λ2, λ3.
The eigenvalues of A are the roots of its characteristic polynomial:

χA(λ) = det(A− λI).

This characteristic polynomial can be factored as:

χA(λ) = −(λ− λ1)(λ− λ2)(λ− λ3).

Evaluating at λ = 0:

χA(0) = −(0− λ1)(0− λ2)(0− λ3) = −(−λ1)(−λ2)(−λ3) = −(−1)λ1λ2λ3 = λ1λ2λ3.

Since χA(0) = det(A), we conclude:

det(A) = λ1λ2λ3.

HW11: Prove that if A has eigenvalues λ1, λ2, λ3, then eA has eigenvalues eλ1 , eλ2 , eλ3 .

PF:

Let A have eigenvalues λ1, λ2, λ3. Suppose that A is diagonalizable. That is,
there exists a matrix Q such that

A = Q−1DQ

where D is a diagonal matrix with the eigenvalues of A on the diagonal.
Now consider the matrix exponential:

eA = I + A+
A2

2!
+

A3

3!
+ · · ·+ Ak

k!

Substituting A = Q−1DQ, we get:

eA = I +Q−1DQ+
(Q−1DQ)2

2!
+

(Q−1DQ)3

3!
+ · · ·+ (Q−1DQ)k

k!

Using the fact that (Q−1DQ)k = Q−1DkQ and that matrix multiplication is
associative, we simplify:

eA =
∞∑
k=0

(Q−1DQ)k

k!
=

∞∑
k=0

Q−1DkQ

k!
= Q−1

(
∞∑
k=0

Dk

k!

)
Q = Q−1eDQ

Now, since D = diag(λ1, λ2, λ3), we know that

eD = diag(eλ1 , eλ2 , eλ3)

Thus, we conclude that eA is diagonalizable and has eigenvalues eλ1 , eλ2 , eλ3 .
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HW12: Show that the following graphs are isomorphic to each other:

• K2,2
∼= C4: Both graphs have 4 vertices, and each vertex has degree 2. The graph

K2,2 is bipartite with vertex sets X = {x1, x2} and Y = {y1, y2}, and edges connecting
every vertex in X to every vertex in Y . The cycle graph C4 has vertices v1, v2, v3, v4
connected in a cycle.
We can define a bijection:

f : V (K2,2) → V (C4), f(x1) = v1, f(y1) = v2, f(x2) = v3, f(y2) = v4.

Observe that adjacency is preserved: In K2,2, edges are exactly between vertices in X
and Y , and under f , these map to edges between adjacent vertices in C4. Therefore,

(x, y) ∈ E(K2,2) ⇐⇒ (f(x), f(y)) ∈ E(C4).

Thus, we conclude that K2,2 and C4 are isomorphic.

• K2
∼= P2: Both graphs have two vertices connected by a single edge. We can label

vertices as v1, v2 in both graphs. Observe that the identity map

f : V (K2) → V (P2), f(vi) = vi

preserves adjacency, since

(v1, v2) ∈ E(K2) ⇐⇒ (f(v1), f(v2)) ∈ E(P2).

Thus, we conclude K2 and P2 are isomorphic.

HW13: Consider the cycle graph C3 with vertices labeled v1, v2, v3.

1. The edges of C3 are oriented clockwise:

v1 → v2, v2 → v3, v3 → v1.

Compute the odd Laplacian ∆− of this graph, and determine dim(ker(∆−)).

• The incidence matrix is:

I =

−1 0 1
1 −1 0
0 1 −1


• The odd Laplacian is:

∆− = (I)>I =

 2 −1 −1
−1 2 −1
−1 −1 2


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• Since the number of independent cycles is one:

dim(ker(∆−)) = 1

2. Now modify the graph by reversing the direction of one edge, so that the edge from v2
to v3 is instead v3 → v2:

v1 → v2, v3 → v2, v3 → v1.

Again compute the odd Laplacian∆− for this modified graph, and determine dim(ker(∆−)).

• The incidence matrix is:

I =

−1 0 1
1 1 0
0 −1 −1


• The odd Laplacian is:

∆− = I>I =

 2 1 −1
1 2 1
−1 1 2


• Since the graph is no longer a cycle:

dim(ker(∆−)) = 0

Follow up question: What happens with ∆− when we change directions?

• The eigenvalues are preserved. ADD MORE

HW16: Compute the characteristic polynomial for complete graph Kn.

∆(Kn) =


n− 1 −1 −1 −1 · · ·
−1 n− 1 −1 −1 · · ·
−1 −1 n− 1 −1 · · ·
−1 −1 −1 n− 1 · · ·
... ... ... ... . . .


We want to find the eigenvalues of the Laplacian matrix ∆ of the graph Kn.
Since Kn is connected, we know that ∆ has eigenvalue 0 with multiplicity 1.
Now, we know ∆ has eigenvalue n, so we consider

dim(ker(∆− nI)).

Note that
∆− nI = M,
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where M is the n× n matrix of all negative ones.
Therefore,

ker(∆− nI) = ker(M).

When we row-reduce the matrixM , we observe that it has only one pivot column.
Using the Rank–Nullity Theorem,

n = rank(M) + dim(ker(M)) =⇒ dim(ker(M)) = n− 1.

Thus, the eigenvalue n has multiplicity n− 1.
We conclude that the characteristic polynomial of ∆ is

P∆Kn
(λ) = λ(λ− n)n−1.

HW17: If Γ is regular of degree d, find an explicit relationship between S(∆), S(A), and d.

Since λ is an eigenvalue of A, there exists a vector v such that:

Av = λv.

Multiplying both sides by −1:

−Av = −λv.

Now consider:
(dI)v − Av = (dI)v − λv,

which gives
(dI − A)v = dv − λv,

and thus
(dI − A)v = (d− λ)v.

Therefore, (d− λ) is an eigenvalue of ∆ = dI − A.

Now, we can compare the entropies:

S(A) =
∑

λi lnλi,

S(∆) =
∑

(d− λi) ln(d− λi),

and expanding we get:

S(∆) =
∑

(d ln(d− λi)− λi ln(d− λi)) .

HW18: Find a formula for the Euler characteristic χ(Lm,n).
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We propose the formula χ(Lm,n) = 1 − (m − 1)(n − 1). We can prove this by
using the fact that the Euler characteristic is equal to the number of vertices
minus the number of edges:

χ = |V | − |E|.

The number of vertices is mn. The number of edges is:

n(m− 1) +m(n− 1) = mn− n+mn−m = 2mn−m− n.

Now, we can compute:

χ = |V | − |E| = mn− (2mn−m− n) = −mn+m+ n.

Observe, we can simplify the proposed formula:

χ = 1− (m− 1)(n− 1) = 1− (mn−m− n+ 1) = −mn+m+ n.

Therefore, both expressions agree, and the formula holds.

HW19: Compute the von Neumann entropy of the first graph (see drawing), along with the
entropy of the path graph P3. Then compare their combined entropy to the entropy of P7.

First, we compute the Laplacian for the first graph. The degree matrix is:

DΓ1 = diag(1, 3, 2, 2)

The adjacency matrix is:

AΓ1 =


0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0


So ∆Γ1 = D − A is:

∆Γ1 =


1 −1 0 0
−1 3 −1 −1
0 −1 2 −1
0 −1 −1 2


The eigenvalues of this matrix are:

λ1 = 0, λ2 = 1, λ3 = 3, λ4 = 4

Therefore, the entropy is:
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S =
∑

λi lnλi = (1 ln 1 + 3 ln 3 + 4 ln 4) ≈ 0 + 3.295 + 5.545 = 8.84

Adding this to our previously calculated entropy for P3, we get a total entropy:

Scombined = 8.84 + 3.295 = 12.13

Now, we can compute the entropy for P7. The Laplacian is:

∆P7 =



1 −1 0 0 0 0 0
−1 2 −1 0 0 0 0
0 −1 2 −1 0 0 0
0 0 −1 2 −1 0 0
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 −1
0 0 0 0 0 −1 1


The eigenvalues of this matrix are:

λ1 = 0, λ2 = 0.198, λ3 = 0.753, λ4 = 1.555, λ5 = 2.445, λ6 = 3.247, λ7 = 3.802

Therefore, the entropy is:

S(P7) =
7∑

i=1

λi lnλi ≈ 11.25

We observe that S(P7) < Scombined, meaning the single longer path has lower entropy
than the disjoint union.

HW20: Questions about Graph Theory project:

• 1. How will you calculate distance? Taking an average might not accurately reflect
what you want if a single class is an outlier.

• 2. How is similarity defined? Is there some way to see if STEM or humanities students
are taking classes in different disciplines? Which groups are more likely to branch out?

• 3. Similar to my first question: pre-med students take a variety of courses but aren’t
necessarily utilizing the open curriculum. Is there a way to reflect this?

• 3. How are cross-listed courses being dealt with?

HW21: Find all simple graphs of order 4 up to isomorphism. (b) Compute L(Γ) (c) Com-
pute S(∆Γ)

• 1. Empty graph (4 single vertices, 0 edges)
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– b) infinite
– c) 0

• 2. Single edge (one edge connecting two vertices, others alone)

– b) infinite
– c) 1.38

• 3. Two disjoint edges (two edges, no vertices shared)

– b) infinite
– c) 2.77

• 4. Path of length 2 (three vertices connected in a chain, one vertex alone)

– b) infinite
– c) 3.30

• 5. Star graph K4 (one center vertex connected to the other three)

– b) 1.5
– c) 5.5

• 6. P4 (four vertices connected in a chain)

– b) 1.67
– c) 5.25

• 7. C4 (four vertices connected in a square)

– b) 1.33
– c) 8.32

• 8. Triangle plus an edge

– b) 1.33
– c) 8.84

• 9. Complete graph minus one edge (4 vertices, 5 edges)

– b) 1.17
– c) 12.47

• 10. Complete graph K4

– b) 1
– c) 16.64
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HW22: Find the difference in the Euler characteristic between

χ = |V | − |E|

Γ1 has:

• |V | = 12 vertices

• |E| = 17 edges

Γ2 has:

• |V | = 13 vertices

• |E| = 18 edges

⇒ χ1 = 12− 17 = −5

⇒ χ2 = 13− 18 = −5

Therefore, the Euler characteristic is the same for both graphs:

χ(Γ1) = χ(Γ2) = −5

This also matches the relation χ = b0 − b1, since the graphs are connected (b0 = 1) and
contain 6 independent cycles (b1 = 6):

χ = 1− 6 = −5

HW23: What is the Ω index?

The small-worldness of a network can be measured using a coefficient called the sigma
index (σ). It is calculated by comparing the clustering coefficient and characteristic path
length of a network to those of an equivalent random network with the same average degree.
However, the performance of this index suffers in larger networks.

The omega index (ω) is thus a better quantifier of small-worldness. It compares the path
length of the network to that of a random graph and the clustering coefficient to that of a
regular (lattice-like) graph. The value of ω ranges from −1 to 1, where:

• ω ≈ −1: The network is represented by a lattice and is regular

45



• ω ≈ 0: The network exhibits small-world properties

• ω ≈ 1: The network behaves like a random graph

HW24: Calculate the entropy of the torus graph.

The degree matrix is:
DΓ = diag(2, 2, 2, 2)

The adjacency matrix is:

AΓ =


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0


So the Laplacian matrix is:

∆Γ = DΓ − AΓ =


2 −1 −1 0
−1 2 0 −1
−1 0 2 −1
0 −1 −1 2


The eigenvalues of this Laplacian matrix are:

λ1 = 0, λ2 = 2, λ3 = 2, λ4 = 4

Therefore, the entropy is:

S =
∑

λi lnλi = 2(2 ln 2) + (4 ln 4) ≈ 8.31
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